Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Oct;53(5):873-9.
doi: 10.1139/y75-120.

Alterations of hepatic microsomal drug metabolism by glucagon

Alterations of hepatic microsomal drug metabolism by glucagon

J V Aranda et al. Can J Physiol Pharmacol. 1975 Oct.

Abstract

The effect of glucagon on the components of the hepatic microsomal electron transport chain (NADPH oxidase, NADPH cytochrome c reductase (EC 1.6.2.4), cytochrome P-450, and NADPH cytochrome P-450 reductase), and on two representative oxidative pathways (aminopyrine N-demethylation, a type I substrate oxidation; and aniline p-hydroxylation, a type II substrate oxidation) was determined. Microsomes from rats pretreated with glucagon (300 mug/kg per day for 3 days) showed a significant decrease in NADPH oxidation and in aminopyrine N-demethylation with a prolonged hexobarbital sleeping time, and a significant increase in aniline p-hydroxylation. Microsomes from rats pretreated with a lower dose of glucagon (30 mug/kg per day for 3 days) showed a significant decrease in the microsomal N-demethylation of aminopyrine. Glucagon had no effect when added in vitro to microsomes, suggesting that the in vivo effects of glucagon are mediated indirectly in the intact animal.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources