Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct 18;70(4):654-8.

Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect

Affiliations
  • PMID: 8115991

Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect

J G Diodati et al. Thromb Haemost. .

Abstract

Nitric oxide (NO) inhibits platelet aggregation. Accordingly, we hypothesized that complexes of diethylamine and spermine with NO (DEA/NO and SPER/NO, respectively), two vasodilators previously shown to release NO spontaneously in aqueous solution, may also be useful antiplatelet agents. Platelet aggregation was measured in whole blood or platelet-rich plasma by impedance aggregometry after addition of collagen. In whole blood, the dose response curve for DEA/NO added 1 min before collagen was similar to that for aspirin (60% inhibition at 10(-4) M), while SPER/NO and sodium nitroprusside were less potent by an order of magnitude. In platelet-rich plasma, 10(-6) M DEA/NO caused 60% inhibition, while SPER/NO and sodium nitroprusside were as active only at 10(-5) M; aspirin's potency was unchanged from that in whole blood. In vivo, DEA/NO and sodium nitroprusside produced significant platelet inhibition 1 min after intravenous injection in the rabbit at 50 nmol/kg. Similar in vivo platelet inhibition was observed with SPER/NO and aspirin, but only at higher dose. The effects of DEA/NO and sodium nitroprusside were transient, lasting less than 30 min after treatment, while the activity of SPER/NO and aspirin was sustained throughout the 30 min experiment. The magnitude and duration of the antiplatelet effects of DEA/NO and SPER/NO correlate with the rates at which they release nitric oxide spontaneously in aqueous solution. Thus, NO/nucleophile complexes merit further exploration both as research tools and as potential antiplatelet agents.

PubMed Disclaimer

LinkOut - more resources