Response to cyanide of two types of glomoid cells in mature rat carotid body
- PMID: 8118682
- DOI: 10.1016/0006-8993(93)90653-5
Response to cyanide of two types of glomoid cells in mature rat carotid body
Abstract
Cells belonging to glomoids of mature rat carotid bodies were studied using the whole-cell patch clamp technique following acute dissociation. The recorded population encompassed two subtypes: one type (n = 202), termed G(out), was characterized by a small voltage-dependent inward current (43 +/- 9 pA, mean +/- S.E.M.), large outward current (671 +/- 31 pA @ +40 mV), high membrane resistance (1910 +/- 110 M omega) and low capacitance (5.1 +/- 0.1 pF). A second subtype (n = 56), termed G(in), had significantly lower membrane resistance (177 +/- 35 M omega), higher membrane capacitance (15.0 +/- 1.0 pF) and little voltage-dependent current. Neither subtype supported generation of multiple action potentials during depolarization in the current clamp mode. Intracellular staining of the recorded cells by Lucifer yellow showed co-localization of both subtypes to clusters of cells which stained positively for catecholamines. Somal diameter was slightly, but significantly, larger for G(in) cells (8.7 +/- 0.4 microM, n = 7) compared to G(out) cells (7.8 +/- 0.2 microM, n = 31) and all cells had fine cytoplasmic processes extending around neighboring cells. During recordings using the perforated patch technique, histotoxic hypoxia significantly decreased a voltage-dependent outward current in G(out) cells by 113 +/- 60 pA (n = 13), and decreased the holding current by 10 +/- 4 pA (n = 13) from a control value of -32 +/- 6 pA. In G(in) cells, cyanide significant decreased membrane resistance and decreased holding current by 55 +/- 28 pA from a control value of +120 +/- 42 pA (n = 7), but caused no significant change in outward current. These results show that glomoids of mature rat carotid bodies contain at least two types of cells which differ in their morphologic and electrophysiologic characteristics. The subtypes rapidly respond to histotoxic hypoxia and thus may mediate separate roles in the organ response to chemostimuli.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
