Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar;134(3):1467-74.
doi: 10.1210/endo.134.3.8119188.

Glucocorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalamic cell lines

Affiliations

Glucocorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalamic cell lines

U R Chandran et al. Endocrinology. 1994 Mar.

Abstract

The synthesis and release of GnRH within a specific subset of neurons in the hypothalamus, which serves as the primary drive to the hypothalamic-pituitary-gonadal (HPG) axis, is subject to various levels of control. Although a number of direct synaptic connections to GnRH-containing neurons have been identified, which presumably provide some regulatory inputs, the mechanisms responsible for hormonal regulation of GnRH synthesis and release mediated by either cell surface or intracellular receptors remain controversial. The recent demonstration that a subset of GnRH-containing neurons in the rat hypothalamus possesses immunoreactive glucocorticoid receptors (GR) implies that this class of steroid hormones could exert a direct effect to regulate the functioning of these neurons and perhaps the HPG axis. We used the GT1-3 and GT1-7 cell lines of immortalized GnRH-secreting hypothalamic neurons as a model to study the direct effects of glucocorticoids on GnRH gene expression. We demonstrated that these cell lines possess GR that bind the synthetic glucocorticoid, dexamethasone, in vitro with high affinity (Kd = 2-3 nM). These receptors are functional, as indicated by their ability to activate transcription from exogenously introduced heterologous glucocorticoid-responsive promoters. Furthermore, dexamethasone represses both the endogenous mouse GnRH gene, decreasing steady state levels of GnRH mRNA, and the transcriptional activity of transfected rat GnRH promoter-reporter gene vectors. Glucocorticoid repression of rat GnRH promoter activity appears to be mediated by sequences contained within the promoter proximal 459 basepairs and not be influenced by the relative basal activity of the GnRH promoter. Thus, our results provide the first direct demonstration of glucocorticoid repression of transcription in a hypothalamic cell line and suggest that GR acting directly within GnRH neurons could be at least partly responsible for negative regulation of the HPG axis by glucocorticoids.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources