Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar 1;220(2):283-92.
doi: 10.1111/j.1432-1033.1994.tb18624.x.

Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin

Affiliations
Free article

Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin

A Suzuki et al. Eur J Biochem. .
Free article

Abstract

Direct interaction between the C-terminal portion of dystrophin and dystrophin-associated proteins was investigated. The binding of dystrophin to each protein was reconstituted by overlaying bacterially expressed dystrophin fusion proteins onto the blot membranes to which dystrophin-associated proteins were transferred after separation by SDS/PAGE with the following results. (a) Among the components of the glycoprotein complex which links dystrophin to the sarcolemma, a 43-kDa dystrophin-associated glycoprotein binds directly to dystrophin. Although at least one of the binding sites of this protein resides within the cysteine-rich domain of dystrophin, a contribution of additional amino acid residues within the first half of the C-terminal domain was also suggested for more secure binding. (b) Two other proteins also directly bind to dystrophin. Their binding sites are suggested to reside within the last half of the C-terminal domain which is alternatively spliced depending on the tissue type. Previously, based on the enzyme digestion experiments, we showed that the binding site for the glycoprotein complex on dystrophin is present within the cysteine-rich domain and the first half of the C-terminal domain [Suzuki, A., Yoshida, M., Yamamoto, H. & Ozawa, E. (1992) FEBS Lett. 308, 154-160]. Here, we have extended this work and found that the region which is involved in interaction with the complex is widely extended to the entire length of this part of the molecule. On the basis of the present results, we propose a model of molecular architecture at the binding site for the complex on dystrophin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources