Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes
- PMID: 81264
- PMCID: PMC2228537
- DOI: 10.1085/jgp.72.3.327
Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes
Abstract
For very narrow channels in which ions and water cannot overtake one another (single-file transport), electrokinetic measurements provide information about the number of water molecules within a channel. Gramicidin A is believed to form such narrow channels in lipid bilayer membranes. In 0.01 and 0.1 M solutions of CsCl, KCL, and NaCl, streaming potentials of 3.0 mV per osmolal osmotic pressure difference (created by urea, glycerol, or glucose) appear across gramicidin A-treated membranes. This implies that there are six to seven water molecules within a gramicidin channel. Electroosmotic experiments, in which the water flux assoicated with current flow across gramicidin-treated membranes is measured, corroborate this result. In 1 M salt solutions, streaming potentials are 2.35 mV per osmolal osmotic pressure difference instead of 3.0 mV. The smaller value may indicate multiple ion occupancy of the gramicidin channel at high salt concentrations. Apparent deviations from ideal cationic selectivity observed while attempting to measure single-salt dilution potentials across gramicidin-treated membranes result from streaming potential effects.
Similar articles
-
Water permeability of gramicidin A-treated lipid bilayer membranes.J Gen Physiol. 1978 Sep;72(3):341-50. doi: 10.1085/jgp.72.3.341. J Gen Physiol. 1978. PMID: 81265 Free PMC article.
-
Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.Biochim Biophys Acta. 1978 Sep 22;512(2):436-51. doi: 10.1016/0005-2736(78)90266-3. Biochim Biophys Acta. 1978. PMID: 81687
-
Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum.Biophys J. 1982 Jun;38(3):227-30. doi: 10.1016/S0006-3495(82)84552-9. Biophys J. 1982. PMID: 6285998 Free PMC article.
-
The gramicidin ion channel: a model membrane protein.Biochim Biophys Acta. 2007 Sep;1768(9):2011-25. doi: 10.1016/j.bbamem.2007.05.011. Epub 2007 May 18. Biochim Biophys Acta. 2007. PMID: 17572379 Review.
-
Transport of water and urea in red blood cells.Am J Physiol. 1984 Mar;246(3 Pt 1):C195-203. doi: 10.1152/ajpcell.1984.246.3.C195. Am J Physiol. 1984. PMID: 6199982 Review.
Cited by
-
Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes.Biophys J. 1989 Feb;55(2):367-71. doi: 10.1016/S0006-3495(89)82814-0. Biophys J. 1989. PMID: 2713449 Free PMC article.
-
The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron.J Membr Biol. 1981 Jan 30;58(1):1-19. doi: 10.1007/BF01871030. J Membr Biol. 1981. PMID: 6163855 Review. No abstract available.
-
Gated, ion-selective channels observed with patch pipettes in the absence of membranes: novel properties of a gigaseal.Biophys J. 1993 Sep;65(3):1101-7. doi: 10.1016/S0006-3495(93)81149-4. Biophys J. 1993. PMID: 7694669 Free PMC article.
-
Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels.Sci Rep. 2015 Dec 18;5:18404. doi: 10.1038/srep18404. Sci Rep. 2015. PMID: 26678093 Free PMC article.
-
Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin.Biophys J. 1999 Nov;77(5):2492-501. doi: 10.1016/S0006-3495(99)77085-2. Epub 2008 Nov 21. Biophys J. 1999. PMID: 20540928 Free PMC article.