Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar;93(3):1120-30.
doi: 10.1172/JCI117064.

Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations

Affiliations

Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations

M M Byrne et al. J Clin Invest. 1994 Mar.

Abstract

Pancreatic beta-cell function was studied in six subjects with mutations in the enzyme glucokinase (GCK) who were found to have elevated fasting and postprandial glucose levels in comparison to six normoglycemic controls. Insulin secretion rates (ISRs) were estimated by deconvolution of peripheral C-peptide values using a two-compartment model and individual C-peptide kinetics obtained after bolus intravenous injections of biosynthetic human C-peptide. First-phase insulin secretory responses to intravenous glucose and insulin secretion rates over a 24-h period on a weight maintenance diet were not different in subjects with GCK mutations and controls. However, the dose-response curve relating glucose and ISR obtained during graded intravenous glucose infusions was shifted to the right in the subjects with GCK mutations and average ISRs over a glucose range between 5 and 9 mM were 61% lower than those in controls. In the controls, the beta cell was most sensitive to an increase in glucose at concentrations between 5.5 and 6.0 mM, whereas in the patients with GCK mutations the point of maximal responsiveness was increased to between 6.5 and 7.5 mM. Even mutations that resulted in mild impairment of in vitro enzyme activity were associated with a > 50% reduction in ISR. The responsiveness of the beta cell to glucose was increased by 45% in the subjects with mutations after a 42-h intravenous glucose infusion at a rate of 4-6 mg/kg per min. During oscillatory glucose infusion with a period of 144 min, profiles from the subjects with mutations revealed reduced spectral power at 144 min for glucose and ISR compared with controls, indicating decreased ability to entrain the beta cell with exogenous glucose. In conclusion, subjects with mutations in GCK demonstrate decreased responsiveness of the beta cell to glucose manifest by a shift in the glucose ISR dose-response curve to the right and reduced ability to entrain the ultradian oscillations of insulin secretion with exogenous glucose. These results support a key role for the enzyme GCK in determining the in vivo glucose/ISR dose-response relationships and define the alterations in beta-cell responsiveness that occur in subjects with GCK mutations.

PubMed Disclaimer

References

    1. Diabetes. 1990 Jun;39(6):647-52 - PubMed
    1. Diabetes. 1990 Nov;39(11):1436-44 - PubMed
    1. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1484-8 - PubMed
    1. Diabetologia. 1991 Feb;34(2):67-73 - PubMed
    1. Nature. 1992 Mar 12;356(6365):162-4 - PubMed

Publication types