Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Apr;62(4):1503-10.
doi: 10.1046/j.1471-4159.1994.62041503.x.

Differential cytotoxicities of N-methyl-beta-carbolinium analogues of MPP+ in PC12 cells: insights into potential neurotoxicants in Parkinson's disease

Affiliations
Comparative Study

Differential cytotoxicities of N-methyl-beta-carbolinium analogues of MPP+ in PC12 cells: insights into potential neurotoxicants in Parkinson's disease

R J Cobuzzi Jr et al. J Neurochem. 1994 Apr.

Abstract

N-Methylated beta-carbolinium cations that can form in vivo from environmental or endogenous beta-carbolines are putative neurotoxic factors in Parkinson's disease. The cytotoxicities of 11 N-methylated beta-carbolinium cations and N-methyl-4-phenylpyridinium cation (MPP+), the experimental parkinsonian neurotoxicant which the carbolinium cations structurally resemble, were examined using rat pheochromocytoma (PC12) cells cultured in "low energy" N-5 medium; cell death was estimated by released lactate dehydrogenase activity and viable cell protein. Of the eight N2-monomethylated beta-carbolinium cations utilized, only 2-methyl-harmalinium (harmaline-2-methiodide) was as cytotoxic as MPP+. Also, three N2(beta), N9(indole)-dimethylated beta-carbolinium cations displayed cytotoxic effects, with the simplest, 2,9-dimethylnorharmanium, approaching the effectiveness of MPP+ in PC12 cells cultured in N-5 medium. However, when PC12 cells grown in higher energy Dulbecco's modified Eagle's medium were utilized with selected effective cations, it was observed that the cultures were relatively resistant to MPP+ and 2,9-dimethylnorharmanium, but remained vulnerable to 2-methylharmalinium. The results are interpreted to mean that different cytotoxic mechanisms exist for the two most potent beta-carbolinium cations--namely, a mechanism for the 2,9-dimethyl-beta-carbolinium species that, as with MPP+, is conditional on mitochondrial ATP depletion, but a different (or additional) mechanism for 2-methylharmalinium that is independent of mitochondrial inhibition. The possible accumulation of these cytotoxic cations in Parkinson's disease is discussed in the context of these findings.

PubMed Disclaimer

Publication types

LinkOut - more resources