Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan 27;15(2):271-6.
doi: 10.1021/bi00647a005.

Replacement of metal in metalloenzymes. A lead-alkaline phosphatase

Replacement of metal in metalloenzymes. A lead-alkaline phosphatase

E Sabbioni et al. Biochemistry. .

Abstract

Lead ions can interact with calf intestine alkaline phosphatase. Experiments using 203Pb-labeled Pb2+ ions showed that Pb2+ ions bind the native protein in a molar ratio of Pb/protein of 1:5 with moderate inhibition of its biochemical activity. The 4 g-atoms of Zn per mol present in the native enzyme may be removed by dialysis against EDTA. The inactive apoenzyme is capable of incorporating Pb2+ ions in a Pb/protein molar ratio of 2:1, giving a lead-protein complex still enzymatically active also when genetic material, such as nucleotides or DNA, has been used a a substrate. The reconstituted lead-protein is capable of binding Zn2+ ions without any release of the Pb2+ ions and with an increase in the catalytic activity of only 10-15%. The absence of Zn in the inactive apoenzyme as well as in the reconstituted lead-protein, the incorporation of Pb2+ ions in stoichiometric amounts in the apoenzyme, and the weak influence of the Zn2+ ions on the enzymatic assay of the lead-enzyme suggest that lead ions partially reactivate the calf intestine alkaline phosphatase apoenzyme.

PubMed Disclaimer