Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;134(4):1602-10.
doi: 10.1210/endo.134.4.8137721.

1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion

Affiliations

1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion

S Lee et al. Endocrinology. 1994 Apr.

Abstract

Previous studies have indicated that the pancreas has receptors specific for 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] and that 1,25-(OH)2D3 increases insulin secretion in vitamin D-deficient rats. In this study we report that in vitamin D-replete, but calcium-deficient, rats in which 1,25-(OH)2D3 levels are elevated, insulin secretion is not altered. In addition, in in vitro studies 1,25-(OH)2D3 at concentrations of 10(-10)-10(-7) M was consistently found to inhibit insulin secretion from islets of vitamin D-replete rats or from the rat insulinoma beta-cell line RIN 1046-38. The RIN cell line was found to contain both vitamin D receptors and calbindin-D28k (CaBP-D28k) protein and mRNA. In RIN cells, treatment with sodium butyrate (2 mM for 3 days) induces a more islet phenotype, as indicated by increased insulin content and secretion and increased insulin gene expression. 1,25-(OH)2D3 treatment (50-100 nM for 48 or 72 h) had no effect on the enhanced levels of insulin secreted in the presence of butyrate. However, 2 mM sodium butyrate induced CaBP-D28k protein (4-fold; control, 0.8 +/- 0.2; sodium butyrate, 3.5 +/- 0.1 microgram/mg protein) and mRNA (3-fold) in the RIN cell line, in accord with the induction by butyrate of insulin content and secretion and beta-cell differentiation, suggesting a possible role for CaBP-D28k in these processes. Although 1,25-(OH)2D3, unlike butyrate, did not enhance insulin secretion, both 1,25-(OH)2D3 (100 nM) and butyrate (2 mM) inhibited RIN cell growth (to 69% and 28% of the control, respectively), and butyrate and 1,25-(OH)2D3 in combination led to a further inhibition of cell growth (to 13% of the control). In response to 1,25-(OH)2D3 (10 nM for 72 h), vitamin D receptors were up-regulated 313% in RIN cells [control, 37 +/- 2; 1,25-(OH)2D3 treated, 115 +/- 5 fmol/mg protein]. In conclusion, 1) contrary to previous studies in the vitamin D-deficient rat, our findings indicate that 1,25-(OH)2D3 action does not necessarily result in enhanced insulin secretion; 2) inhibition of cell growth and up-regulation of vitamin D receptors by 1,25-(OH)2D3 suggest that parameters in addition to insulin secretion can be affected by 1,25-(OH)2D3 in the beta-cell; 3) the RIN beta-cell line provides a novel in vitro system for studying the effect of the vitamin D endocrine system on pancreatic islet physiology.

PubMed Disclaimer

Comment in

Publication types

MeSH terms