Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 1;266(1):87-97.
doi: 10.1016/0922-4106(94)90213-5.

Effect of CH3HgCl and several transition metals on the dopamine neuronal carrier; peculiar behaviour of Zn2+

Affiliations

Effect of CH3HgCl and several transition metals on the dopamine neuronal carrier; peculiar behaviour of Zn2+

J J Bonnet et al. Eur J Pharmacol. .

Abstract

CH3Hg+ and metal ions inhibited the specific binding of (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl) piperazine) ([3H]GBR 12783) to the dopamine neuronal carrier present in membranes from rat striatum with a general rank order of potency CH3Hg+ > Cu2+ > Cd2+ > Zn2+ > Ni2+ = Mn2+ = Co2+, suggesting that -SH groups are chiefly involved in this inhibition. Five millimolar dithiothreitol reversed the rather stable block of the specific binding produced by Cd2+ or Zn2+. An increase in the concentration of Na+, or addition of either K+ or Ca2+ reduced the inhibitory effects of metal cations, except Cu2+. Zn2+ (3 microM) reduced the inhibitory potency of Cd2+ on the binding but was ineffective against CH3Hg+ and Cu2+. Zn2+ at 0.3 to 10 microM significantly enhanced the specific binding of [3H]GBR 12783 and [3H]cocaine by 42 to 146%. Zn2+ (3 microM) increased the affinity of all pure uptake inhibitors tested and of the majority of the substrates for the [3H]GBR 12783 binding site. Dissociation experiments revealed that Zn2+ both inhibited and enhanced the [3H]GBR 12783 binding by recognizing amino acids located close to or in the radioligand binding site. Micromolar concentrations of Zn2+ noncompetitively blocked the [3H]dopamine uptake but they did not modify the block of the transport provoked by pure uptake inhibitors. These findings suggest that Na+, K+, Ca2+ and metal ions could recognize some -SH groups located in the [3H]GBR 12783 binding site; low concentrations of Zn2+ could allow a protection of these -SH groups.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources