Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Jan;98(2):125-31.
doi: 10.1016/0303-7207(94)90130-9.

Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling

Affiliations
Review

Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling

A Galione. Mol Cell Endocrinol. 1994 Jan.

Abstract

Cyclic adenosine diphosphate-ribose, an endogenous metabolite of nicotinamide adenine dinucleotide was first characterized as a potent Ca2+ mobilizing agent in sea urchin eggs. Mounting evidence points to it being an endogenous activator of Ca(2+)-induced Ca2+ release by non-skeletal muscle ryanodine receptors in several invertebrate and mammalian cell types. Cyclic adenosine diphosphate-ribose is synthesized by adenosine diphosphate-ribosyl cyclases, which have been found to be widespread enzymes. Recent data suggests that cyclic adenosine diphosphate-ribose may function as a second messenger in sea urchin eggs at fertilization and in stimulus secretion coupling in pancreatic beta-cells. A second messenger role for cyclic adenosine diphosphate-ribose requires that its intracellular levels be under the control of extracellular stimuli. Another second messenger, cGMP, stimulates the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide by activating the adenosine diphosphate-ribosyl cyclase pathway in sera urchin eggs and egg homogenates, suggesting that cyclic adenosine diphosphate-ribose may be an intracellular messenger for cell surface receptors or nitric oxide, which activate cGMP-producing guanylate cyclases. Cyclic adenosine diphosphate-ribose may have a similar role to inositol trisphosphate in controlling intracellular calcium signalling with these two calcium-mobilizing second messengers activating ryanodine receptors and inositol trisphosphate receptors respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources