Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Apr 1;269(13):9736-42.

Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila

Affiliations
  • PMID: 8144565
Free article
Comparative Study

Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila

W P Lu et al. J Biol Chem. .
Free article

Abstract

Methanosarcina thermophila contains a multienzyme complex called the carbon-monoxide dehydrogenase complex, which has been resolved into a nickel/iron-sulfur and a corrinoid/iron-sulfur component. This complex plays a central role in acetoclastic methanogenesis. The Ni/Fe-S component catalyzes CO oxidation and has been proposed to be involved in cleavage of acetyl-CoA into its methyl, carbonyl, and CoA moieties. In the work reported here, three metal centers in the Ni/Fe-S component were characterized by electron paramagnetic resonance (EPR) spectroscopy and spectroelectrochemistry and pre-steady state kinetics. Center A contains nickel and iron and forms an EPR active adduct with CO, which is called the NiFeC species. The EPR spectrum of the NiFeC species has g values of 2.059, 2.051, and 2.029 and is observable at temperatures as high as 150 K. This signal had previously been observed only in the carbon-monoxide dehydrogenase complex of M. thermophila and the acetyl-CoA synthase from acetate-producing bacteria. Incubation of the CO-reduced Ni/Fe-S component with acetyl-CoA resulted in an increase in intensity of the NiFeC signal, which supports a role for the component in the cleavage of acetyl-CoA. Generation of the NiFeC EPR signal occurs with a rate constant of 0.4 s-1, a result that demonstrates the kinetic competence of this species in the acetyl-CoA cleavage reaction but rules it out as the site of oxidation of CO to CO2. Center B is likely to be a [4Fe-4S]2+/1+ center with g values of 2.04, 1.93, and 1.89 (gav = 1.95) and a standard reduction potential (E'0) of -444 mV. At potentials less than -500 mV, another EPR signal develops that appears to originate from another state of Center B. Center C is a fast relaxing center with g values of 2.02, 1.88, and 1.71 (gav = 1.87) and an E'0 of -154 mV.

PubMed Disclaimer

Publication types

LinkOut - more resources