Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 31;632(1-2):232-8.
doi: 10.1016/0006-8993(93)91158-o.

Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization

Affiliations

Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization

S Bernath et al. Brain Res. .

Abstract

Electrical field depolarization releases gamma-aminobutyric acid (GABA) in rat striatal slices in the absence of external Ca2+. omega-Conotoxin GVIA (omega-CgTx; 1-50 nM), a neuronal Ca2+ channel blocker, inhibits electrically evoked efflux of newly taken up [3H]GABA in a concentration-dependent manner in either normal or Ca(2+)-free medium. This suggests that ion influx occurs through Ca2+ channels in the absence of external Ca2+ and contributes to the efflux of GABA. Reducing external Na+ concentration to 27.25 mM (low [Na+]o medium) by equimolarly substituting choline chloride for sodium chloride has differential effects on electrically evoked GABA efflux depending on the external Ca2+ concentrations. In normal Ca2+ medium, electrically evoked GABA efflux increases whereas, in Ca(2+)-free medium, it is greatly inhibited when [Na+]o is reduced to 27.25 mM. In low [Na+]o medium, GABA efflux is largely tetrodotoxin (TTX)-sensitive, however, spike firing evoked by antidromic stimulation of striatal cells is inhibited. In Na(+)-free medium, resting GABA efflux increases 17-fold whereas evoked GABA efflux diminishes. In Ca(2+)-free medium, 70 min of incubation with 1-2-bis-(1-aminophenoxy)ethane-N,N,N',N' tetraacetoxy methyl ester (BATPA-AM, 1 microM), an intracellular calcium chelator, increases both resting GABA efflux and electrically evoked GABA overflow by approximately 100%. These results suggest that: (1) in Ca(2+)-free conditions, Na+ permeability of cells increases via Ca2+ channels and this profoundly affects GABA efflux. (2) Electrical field depolarization is likely to release GABA by directly depolarizing axon terminals. (3) Ca(2+)-independent GABA efflux is not promoted by an increase in intracellular free Ca2+ concentration via Na+/Ca2+ exchange processes from internal pools.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources