Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;15(1):28-35.
doi: 10.1016/0143-4160(94)90101-5.

The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte

Affiliations

The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte

F Salamino et al. Cell Calcium. 1994 Jan.

Abstract

The activation of calpain in normal human erythrocytes incubated in the presence of Ca2+ and the Ca2+ ionophore A23187 led to the decline of the Ca(2+)-dependent ATPase activity of the cells. Preloading of the erythrocyte with an anticalpain antibody prevented the decline. The pump was also inactivated by applied to isolated erythrocyte plasma membranes. The decline of the pump activity corresponded to the degradation of the pump protein and was inversely correlated to the amount of the natural inhibitor of calpain, calpastatin, present in the cells. In erythrocytes containing only 50% of the normal level the degradation started at a concentration of Ca2+ significantly lower than in normal cells. A comparison of the concentrations of Ca2+ required for the degradation of a number of erythrocyte membrane proteins showed that the Ca2+ pump and band 3 were the most sensitive. All other membrane proteins tested were attacked at higher levels of intracellular Ca2+. Thus, the degradation of the Ca2+ pump protein may be a simple and sensitive means to monitor calpain activation in vivo. Furthermore, the results have shown that the calpastatin level correlated directly with the amount of activable calpain and with the concentration of Ca2+ required to trigger the activation process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources