Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec;50(3):385-97.
doi: 10.1016/0165-0270(93)90044-r.

A versatile technique for patterning biomolecules onto glass coverslips

Affiliations

A versatile technique for patterning biomolecules onto glass coverslips

B Lom et al. J Neurosci Methods. 1993 Dec.

Abstract

A fast, inexpensive, and versatile technique for patterning the surface of glass coverslips with molecules of biological interest is described. The technique combines photolithographic, silane-coupling, and protein adsorption procedures to pattern coverslips with amines, alkanes, and proteins with micrometer spatial resolution. The attachment of amines and alkanes was verified using contact angle and X-ray photoelectron spectroscopic (XPS) measurements. XPS results showed that amines and alkanes were attached in 1-4 nm thickness covering approximately 20% and 45%, respectively, of the surface. Patterns of amines were visualized using fluorescent staining, and patterns of proteins were detected immunochemically. Patterned coverslips were used to investigate adhesion and neurite outgrowth of mouse neuroblastoma (N1E-115) cells. Cells were examined on the following patterns: alkane-glass, protein-glass, amine-alkane, and amine-protein. Cell attachment and neurite outgrowth on patterned coverslips displayed the following preferences: laminin, fibronectin, or collagen IV > amine or glass > alkane or bovine serum albumin. This patterning method should be useful for studies of cell-surface interactions, cell migration, nerve regeneration, and the formation of neural networks in vitro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources