Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb;11(3):481-7.
doi: 10.1111/j.1365-2958.1994.tb00329.x.

Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study

Affiliations

Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study

I M Helander et al. Mol Microbiol. 1994 Feb.

Abstract

De-O-acylated lipopolysaccharides (LPS) of three polymyxin-resistant Salmonella typhimurium pmrA mutants and their parent strains were analysed by 31P-NMR (nuclear magnetic resonance) in order to assess, in relation to polymyxin resistance, the types and degree of substitution of phosphates of the LPS and lipid A. In the pmrA mutant LPS phosphate diesters predominated over phosphate monoesters, whereas the latter were more abundant in the parent wild-type LPS. The increase in the proportion of phosphate diesters was traced to both the core oligosaccharide and the lipid A part. In the latter, the ester-linked phosphate at position 4' was to a large extent (79-88%) substituted with 4-amino-4-deoxy-L-arabinose, whereas in the wild-type LPS the 4'-phosphate was mainly present as monoester. In each LPS, regardless of the pmrA mutation, the glycosidically linked phosphate of lipid A was largely unsubstituted.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources