Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;44(1):41-50.
doi: 10.1016/0925-4773(93)90015-p.

Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types

Affiliations

Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types

V A Maltsev et al. Mech Dev. 1993 Nov.

Abstract

Pluripotent embryonic stem cells (ESC, ES cells) of line D3 were differentiated in vitro and via embryo-like aggregates (embryoid bodies) of defined cell number into spontaneously beating cardiomyocytes. By using RT-PCR technique, alpha- and beta-cardiac myosin heavy chain (MHC) genes were found to be expressed in embryoid bodies of early to terminal differentiation stages. The exclusive expression of the beta-cardiac MHC gene detected in very early differentiated embryoid bodies proved to be dependent on the number of ES cells developing in the embryoid body. Cardiomyocytes enzymatically isolated from embryoid body outgrowths at different stages of development were further characterized by immunocytological and electrophysiological techniques. All cardiomyocytes appeared to be positive in immunofluorescence assays with monoclonal antibodies against cardiac-specific alpha-cardiac MHC, as well as muscle-specific sarcomeric myosin heavy chain and desmin. The patch-clamp technique allowed a more detailed characterization of the in vitro differentiated cardiomyocytes which were found to represent phenotypes corresponding to sinusnode, atrium or ventricle of the heart. The cardiac cells of early differentiated stage expressed pacemaker-like action potentials similar to those described for embryonic cardiomyocytes. The action potentials of terminally differentiated cells revealed shapes, pharmacological characteristics and hormonal regulation inherent to adult sinusnodal, atrial or ventricular cells. In cardiomyocytes of intermediate differentiation state, action potentials of very long duration (0.3-1 s) were found, which may represent developmentally controlled transitions between different types of action potentials. Therefore, the presented ES cell differentiation system permits the investigation of commitment and differentiation of embryonic cells into the cardiomyogenic lineage in vitro.

PubMed Disclaimer

Publication types

LinkOut - more resources