Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 15;269(15):11449-55.

Signal transduction by a chimeric insulin-like growth factor-1 (IGF-1) receptor having the carboxyl-terminal domain of the insulin receptor

Affiliations
  • PMID: 8157675
Free article

Signal transduction by a chimeric insulin-like growth factor-1 (IGF-1) receptor having the carboxyl-terminal domain of the insulin receptor

S Tartare et al. J Biol Chem. .
Free article

Abstract

Insulin-like growth factor-1 receptors (IGF-1R) and insulin receptors (IR) are closely related tyrosine kinases. However, the IR plays a major role in metabolism control, whereas the IGF-1R is mainly involved in growth and differentiation. With these observations in mind, we wished to define the regions of IR and IGF-1R responsible for generation of biological specificity. We constructed a chimeric IGF-1R in which the carboxyl-terminal domain was replaced by that of IR. This receptor (IGF/CTIR) was expressed in NIH3T3 cells, and we compared its biological activity with that of wild-type receptors. The IGF/CTIR was fully functional regarding kinase activity and biological properties. Comparison of insulin and IGF-1 effects on IR and IGF-1R cells, respectively, indicated that the IR is more efficient in stimulating glycogen synthesis and p44mapk activity than is the IGF-1R. Interestingly, in IGF/CTIR16 cells expressing only 250,000 receptors glycogen synthesis was better stimulated than in IGF-1R cells with 600,000 receptors. Similarly, p44mapk activation was slightly higher in IGF/CTIR16 cells than in IGF-1R cells. These results suggest that the carboxyl-terminal domain of IR is more tightly coupled to the stimulation of glycogen synthesis and to the p44mapk pathway than is that of IGF-1R. We propose that this domain plays a crucial role in the transmission of biological effects and could account, at least in part, for receptor specificity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources