Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar;169(3):538-46.
doi: 10.1093/infdis/169.3.538.

Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin

Affiliations

Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin

M S Jacewicz et al. J Infect Dis. 1994 Mar.

Abstract

Shiga toxin recognizes a galactose-alpha 1-->4-galactose terminal glycolipid, globotriaosylceramide (Gb3), in sensitive mammalian cells and is translocated by endocytosis to the cytoplasm, where it blocks protein synthesis. To determine if Gb3 is both required and sufficient for toxicity, Gb3 content in cells was altered by blocking key biosynthetic or degradative path enzymes with specific inhibitors. The resulting decrease or increase in cellular Gb3 was associated with a decrease or increase in binding of and response to Shiga toxin. Toxin-resistant Gb3-deficient variants of sensitive cells fused with liposomes containing Gb3 but not globotetraosylceramide (Gb4) became susceptible, whereas fusion of Gb3 liposomes to naturally resistant Gb3-deficient CHO cells increased toxin binding but not cytotoxicity. These data demonstrate that Gb3 is required, but not sufficient, for the action of Shiga toxin and suggest the existence of a toxin translocation mechanism linked to surface glycolipids that is not expressed in CHO cells.

PubMed Disclaimer

Publication types

LinkOut - more resources