Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 19;33(15):4604-10.
doi: 10.1021/bi00181a022.

Influence of excitation energy on the bacteriorhodopsin photocycle

Affiliations

Influence of excitation energy on the bacteriorhodopsin photocycle

R W Hendler et al. Biochemistry. .

Abstract

Kinetic curves for the bacteriorhodopsin (BR) photocycle were obtained both at 570 and at 412 nm at a series of increasing levels of intensity of the exciting laser. Singular value decomposition (SVD) of these curves showed two transitions in the kinetic profiles that occurred at specific levels of actinic light. This means that the photocycle was influenced by photon density in two ways. In a separate application of SVD, time-resolved optical spectra were analyzed at each of many levels of exciting laser intensities. The studies showed that the transition at the low level of laser intensity was due principally to an increase in the amount of BR that was turning over. The transition at the higher level of laser intensity showed a fundamental change in kinetics of the photocycle. At low intensity levels, the fast form of M (Mf) predominated, whereas at high levels the slow form of M (Ms) predominated. A distinction was found between Mf and Ms, in that the former decayed directly to the O intermediate whereas the latter decayed directly to BR.

PubMed Disclaimer

Substances