Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 22;269(16):12152-8.

Modulation of A beta adhesiveness and secretase site cleavage by zinc

Affiliations
  • PMID: 8163520
Free article

Modulation of A beta adhesiveness and secretase site cleavage by zinc

A I Bush et al. J Biol Chem. .
Free article

Abstract

Abnormalities of zinc homeostasis occur in Alzheimer's disease (AD), a dementia characterized by the aggregation of A beta in the brain, and in Down syndrome, a condition characterized by premature AD. We studied the binding of Zn2+ to a synthetic peptide representing residues 1-40 (A beta 1-40), as well as other domains of A beta. Two classes of Zn2+ binding were identified by 65Zn2+ labeling: highly specific pH-dependent high affinity (K(a) = 107 nM) binding, and lower affinity (K(a) = 5.2 microM) binding. Gel filtration chromatography identified monomeric, dimeric, and polymeric A beta species. Zinc induced a marked loss of A beta solubility upon chromatographic analysis. This was attributed to precipitation onto the column glass, which contains aluminosilicate, and was confirmed by the observation of zinc-accelerated precipitation of A beta by kaolin, a hydrated aluminum silicate suspension. Zinc binding also increased A beta resistance to tryptic cleavage at the secretase site, indicating that a small (<3 microM) increase in brain Zn2+ concentration could significantly alter A beta metabolism. We propose that elevated brain interstitial zinc levels may increase A beta adhesiveness and interfere with A beta catabolism. Consequently, abnormalities of regional zinc concentrations in the brains of patients with AD or Down syndrome may contribute to A beta amyloidosis in these disorders.

PubMed Disclaimer

Publication types

LinkOut - more resources