Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;149(5):1180-5.
doi: 10.1164/ajrccm.149.5.8173757.

Viral respiratory infection causes airway hyperresponsiveness and decreases histamine N-methyltransferase activity in guinea pigs

Affiliations

Viral respiratory infection causes airway hyperresponsiveness and decreases histamine N-methyltransferase activity in guinea pigs

H Nakazawa et al. Am J Respir Crit Care Med. 1994 May.

Abstract

We investigated the effects of viral respiratory infection by Sendai virus on bronchial responses to aerosolized histamine in anesthetized guinea pigs and on the activity of histamine N-methyltransferase (HMT). We measured the change in total pulmonary resistance induced by histamine in the presence or absence of a specific HMT inhibitor, SKF 91488, in noninfected and infected animals. In the absence of SKF 91488, the bronchoconstrictor response to histamine was greater in infected than in noninfected animals. SKF 91488 (10(-2) M, 90 breaths) potentiated the responses to histamine in noninfected animals, and the magnitude of augmented responses to histamine by SKF 91488 was similar to that by viral infection. Furthermore, SKF 91488 did not further potentiate the responses to histamine in infected animals. However, responses to aerosolized acetylcholine were unaffected by viral infection and SKF 91488. The HMT activity decreased by 56% in the trachea, 86% in the bronchi, and 52% in the parenchymal tissue in the infected animals. In contrast to HMT activity, acetylcholinesterase activity was unaffected by viral infection. These results suggest that respiratory infection by Sendai virus causes enhanced bronchial responsiveness to histamine by decreasing HMT activity in airways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources