Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar 30;28(5):1107-12.
doi: 10.1016/0360-3016(94)90484-7.

Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

Affiliations

Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

G M Morris et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model.

Methods and materials: The neutron capture agent used was 10B enriched sodium mercaptoundecahydro-closododecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T2 was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation.

Results: The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma.

Conclusion: The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons.

PubMed Disclaimer

Publication types

LinkOut - more resources