Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May 13;238(4):592-614.
doi: 10.1006/jmbi.1994.1317.

The solution structures of the trp repressor-operator DNA complex

Affiliations

The solution structures of the trp repressor-operator DNA complex

H Zhang et al. J Mol Biol. .

Abstract

The solution structures of the complex between Escherichia coli trp holorepressor and a 20 base-pair consensus operator DNA were determined. The majority of proton chemical shifts of the trp holorepressor and operator DNA were assigned from homonuclear 2D NOESY spectra of selectively deuterated analog-operator DNA complexes and the 3D NOESY-HMQC spectrum of a uniformly 15N-labeled repressor-operator DNA complex. The structures were calculated using restrained molecular dynamics and sequential simulated annealing with 4086 NOE and other experimental constraints. The root-mean-squared deviation (RMSD) among the calculated structures and their mean is 0.9(+/- 0.3)A for the repressor backbone, 1.1(+/- 0.5)A for the DNA backbone, and 1.3(+/- 0.3)A for all heavy atoms. The DNA is deformed to a significant extent from the standard B DNA structure to fit the helix-turn-helix (HTH) segment of the repressor (helices D and E) into its major grooves. Little change is found in the ABCF core of the repressor on complexation in comparison to the free repressor, but changes in the cofactor L-tryptophan binding pocket and the HTH segment are observed. The N-terminal residues (2 to 17) are found to be disordered and do not form stable interactions with DNA. Direct H-bonding to the bases of the operator DNA is consistent with all of our observed NOE constraints. Hydrogen bonds from NH eta 1 and NH eta 2 of Arg69 to O-6 and N-7 of G2 are compatible with the solution structure, as they are with the crystal structure. Other direct H-bonds from Lys72, Ala80, Ile79, Thr83 and Arg84 to base-pair functional groups can also be formed in our solution structures.

PubMed Disclaimer

Publication types

LinkOut - more resources