Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;266(4 Pt 1):C946-56.
doi: 10.1152/ajpcell.1994.266.4.C946.

Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium

Affiliations

Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium

J L Edelman et al. Am J Physiol. 1994 Apr.

Abstract

Radioactive tracers and a modified capacitance-probe technique were used to characterize the mechanisms that mediate Cl and fluid absorption across the bullfrog retinal pigment epithelium (RPE)-choroid. In control (HCO3/CO2) Ringer solution, 36Cl was actively absorbed (retina to choroid) at a mean rate of 0.34 mu eq.cm-2.h-1 (n = 34) and accounted for approximately 25% of the short-circuit current. Apical bumetanide (100 microM) or basal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 1 mM) inhibited active Cl transport by 70 and 62%, respectively. Active Cl absorption was doubled, either by removing HCO3 from the bathing media or by elevating CO2 from 5 to 13%, and the increased flux was inhibited by apical bumetanide or basal DIDS. Open-circuit measurements of fluid absorption rate (Jv) and the net fluxes of 36Cl, 22Na, and 86Rb (K substitute) indicated that CO2-induced acidification stimulated NaCl and fluid absorption across the RPE. During acidification, bumetanide produced a twofold larger inhibition of Jv compared with control. Stimulation of net Cl absorption was most likely caused by inhibition of the the basolateral membrane intracellular pH-dependent Cl-HCO3 exchanger.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources