Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;266(4 Pt 1):G731-6.
doi: 10.1152/ajpgi.1994.266.4.G731.

Secretin activates Cl- channels in bile duct epithelial cells through a cAMP-dependent mechanism

Affiliations

Secretin activates Cl- channels in bile duct epithelial cells through a cAMP-dependent mechanism

J M McGill et al. Am J Physiol. 1994 Apr.

Abstract

Using patch-clamp recording techniques, we assessed the effects of secretin on membrane ion channel activity in isolated rat bile duct epithelial cells. In the whole cell configuration, secretin activated an inward membrane current at -40 mV in 6 of 13 cells, and increased current density from 17 +/- 8 to 98 +/- 33 pA/pF. Secretin-stimulated currents reversed near the equilibrium potential for Cl- and exhibited a linear current-voltage relationship. In the cell-attached configuration, secretin activated low-conductance channels in 73% (11 of 15) of patches. Similar channels were activated by forskolin, suggesting that adenosine 3',5'-cyclic monophosphate (cAMP) is involved as a second messenger. At the resting membrane potential, channels carried inward membrane current and had a slope conductance of 10 +/- 1 pS. In excised patches, addition of purified catalytic subunit of cAMP-dependent protein kinase (protein kinase A) to the cytoplasmic surface activated channels in four of six attempts. With equal Cl- concentrations in bath and pipette, channels had a linear slope conductance of 13 +/- 2 pS and currents reversed near 0 mV. Partial substitution of pipette Cl- with gluconate caused a shift in reversal potential in the direction anticipated for a Cl(-)-selective channel (gluconate to Cl- permeability ratio of 0.21 +/- 0.05, n = 4). Thus in bile duct epithelial cells, exposure to secretin activates low-conductance, Cl(-)-selective channels, probably through a cAMP-dependent mechanism. This likely contributes to secretin-dependent choleresis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources