Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 29;47(9):1661-7.
doi: 10.1016/0006-2952(94)90545-2.

Effects of scalaradial, a novel inhibitor of 14 kDa phospholipase A2, on human neutrophil function

Affiliations

Effects of scalaradial, a novel inhibitor of 14 kDa phospholipase A2, on human neutrophil function

M S Barnette et al. Biochem Pharmacol. .

Abstract

Scalaradial, a marine natural product with anti-inflammatory activity, has been shown to be a selective inhibitor of 14 kDa type II phospholipase A2(PLA2). We have examined the inhibition by scalaradial (0.1 nM to 10 microM) of neutrophil function (degranulation) in response to receptor-mediated activation [N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), 30 nM; leuokotriene B4 (LTB4), 100 nM; platelet-activating factor (PAF), 100 nM] and non-receptor-mediated stimuli [A23187 (1 microM) and thapsigargin (100 nM)]. Furthermore, we evaluated the ability of scalaradial to inhibit the increase in intracellular Ca2+ in response to fMLP, LTB4, A23187, and thapsigargin as well as its ability to prevent either fMLP- or LTB4-mediated elevation in inositol phosphate production (InsP). Scalaradial was a potent inhibitor of both receptor- (IC50 = 50-200 nM) and non-receptor- (IC50 = 40-900 nM) mediated degranulation. Although scalaradial inhibited the mobilization of Ca2+ induced by fMLP, LTB4, and PAF, it did not affect the maximal Ca2+ levels attained with A23187 or thapsigargin. Neutrophil-binding studies with [3H]fMLP and [3H]LTB4 would suggest that the effect of scalaradial on agonist-induced degranulation and increase in intracellular Ca2+ was not at the receptor level because 50-fold higher concentrations were required to have a significant effect on the binding of these agonists. To determine if scalaradial affected phosphatidylinositol selective phospholipase C (PI-PLC) activity, assays were conducted to monitor fMLP- and LTB4-induced formation of InsPs using myo-[3H]inositol-labeled U-937 cells. In these cells, 2.5 to 9-fold higher concentrations of scalaradial were required to inhibit PI-PLC activity than to inhibit agonist-induced degranulation of neutrophils, suggesting that the effects of scalaradial on Ca2+ and degranulation are not the sole result of blocking receptor activation of PI-PLC. Results obtained with receptor-mediated stimuli suggest that scalaradial may have direct effects on Ca2+ channels and InsP turnover, but inhibition of intracellular Ca2+ levels was not required for scalaradial to block degranulation since scalaradial was capable of inhibiting degranulation produced by either A23187 or thapsigargin, without changing the maximal Ca2+ levels obtained with these two stimuli. These results demonstrate that scalaradial can inhibit degranulation in the presence of micromolar intracellular Ca2+ concentration, thus supporting the hypothesis that a 14 kDa PLA2 may be important in the regulation of neutrophil degranulation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources