Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;12(5):943-56.
doi: 10.1016/0896-6273(94)90306-9.

Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals

Affiliations

Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals

P I Hanson et al. Neuron. 1994 May.

Abstract

Autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase makes it Ca2+ independent by trapping bound calmodulin and by enabling the kinase to remain partially active even after calmodulin dissociates. We show that autophosphorylation is an intersubunit reaction between neighbors in the multimeric kinase which requires two molecules of calmodulin. Ca2+/calmodulin acts not only to activate the "kinase" subunit but also to present effectively the "substrate" subunit for autophosphorylation. Conversion of the kinase to the potentiated or trapped state is a cooperative process that is inefficient at low occupancy of calmodulin. Simulations show that repetitive Ca2+ pulses at limiting calmodulin lead to the recruitment of calmodulin to the holoenzyme, which further stimulates autophosphorylation and trapping. This cooperative, positive feedback loop will potentiate the response of the kinase to sequential Ca2+ transients and establish a threshold frequency at which the enzyme becomes highly active.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources