Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;119(3):957-68.
doi: 10.1242/dev.119.3.957.

Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage

Affiliations

Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage

H Schnürch et al. Development. 1993 Nov.

Abstract

We are interested in the molecular mechanisms that are involved in the development of the vascular system. In order to respond to morphogenetic and mitogenic signals, endothelial cells must express appropriate receptors. To characterize endothelial cell-specific receptors, we have concentrated on receptor tyrosine kinases, because several lines of evidence suggested the importance of controlled phosphotyrosine levels in endothelial cells. A strategy based on PCR amplification using degenerate oligonucleotides and mouse brain capillaries as mRNA source, led to the identification of a novel receptor tyrosine kinase, which we designated tie-2. In situ hybridization using a tie-2-specific probe revealed an interesting spatial and temporal expression pattern. The gene was expressed specifically in the endothelial lineage. tie-2 transcripts were present in endothelial cell precursors (angioblasts) and also in endothelial cells of sprouting blood vessels throughout development and in all organs and tissues so far examined. tie-2 was down-regulated in the adult. Because of the unusual combination of immunoglobulin, EGF-like and fibronectin type III domains in the extracellular portion of tie-2 which is shared by TEK and tie, these molecules may be considered members of a new family of receptor tyrosine kinases. Signal transduction via this new class of tyrosine kinases could lead to a better understanding of the molecular mechanisms of blood vessel formation.

PubMed Disclaimer

Substances