Lead perturbs 1,25 dihydroxyvitamin D3 modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells
- PMID: 8190013
 - DOI: 10.1016/0024-3205(94)00594-x
 
Lead perturbs 1,25 dihydroxyvitamin D3 modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is known to modulate Ca2+ metabolism in several cell types. 1,25(OH)2D3 causes an increase in Ca2+ influx and probably exerts many of its effects via the Ca2+ messenger system. Lead (Pb2+) interacts with and perturbs normal Ca2+ signalling pathways; hence, the purpose of this work was to determine if Pb2+ perturbs 1,25(OH)2D3 modulation of Ca2+ metabolism in ROS 17/2.8 cells, which express receptors for and respond to 1,25(OH)2D3, and to determine the effect of 1,25(OH)2D3 on Pb2+ metabolism in these cells. In both cases three kinetic compartments described the intracellular metabolism of the isotope. These data show that 1 microM Pb2+ inhibits 1,25(OH)2D3 modulated increases in Ca2+ flux, whereas 5 microM Pb2+ increases membrane fluxes, all intracellular Ca2+ pools, and total cell Ca2+. In the Pb2+ metabolism studies it was found that 10 nM 1,25(OH)2D3 increases intracellular Pb2+. Pb2+ appears to disrupt the modulation of intracellular steady-state Ca2+ homeostasis by 1,25(OH)2D3 in a complex, biphasic manner and may therefore perturb functions that are modulated by 1,25(OH)2D3 via the Ca2+ messenger system.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
