Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;45(5):1036-42.

A single species of A1 adenosine receptor expressed in Chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release

Affiliations
  • PMID: 8190094

A single species of A1 adenosine receptor expressed in Chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release

M Akbar et al. Mol Pharmacol. 1994 May.

Abstract

Chinese hamster ovary cells were transfected with both A1 adenosine receptor and muscarinic type 3 acetylcholine receptor cDNAs. The muscarinic receptor agonist carbachol stimulated phospholipase C activity, resulting in Ca2+ mobilization and arachidonate release. N6-Cyclopentyladenosine (CPA), an A1 receptor agonist, did not activate Ca(2+)-related signal transduction systems by itself but instead inhibited cAMP accumulation. In the presence of carbachol, however, the A1 receptor agonist enhanced muscarinic receptor agonist-induced phospholipase C/Ca2+ responses. In addition, the arachidonate release caused by Ca2+ ionophores or thapsigargin was also amplified by CPA, without a change in phospholipase C activity. Thus, CPA augments Ca(2+)-mediated phospholipase A2 activation in addition to and separate from its ability to amplify phospholipase C-mediated Ca2+ mobilization. Because the permissive actions of CPA on phospholipase C and phospholipase A2 activation were each reversed by pertussis toxin treatment, in a manner similar to that of the CPA-induced inhibition of cAMP accumulation, we conclude that a single species of A1 receptor expressed in Chinese hamster ovary cells can couple to multiple signal transduction systems stemming from phospholipase C stimulation, phospholipase A2-mediated and Ca(2+)-dependent arachidonate release, and inhibition of cAMP accumulation. A pertussis toxin-sensitive G protein (or proteins) mediates the permissive actions of the A1 receptor in the stimulation of phospholipase C- and phospholipase A2-mediated arachidonate release.

PubMed Disclaimer

Publication types

LinkOut - more resources