Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Jun 3;269(22):15512-9.

Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis

Affiliations
  • PMID: 8195195
Free article
Comparative Study

Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis

S T Iobst et al. J Biol Chem. .
Free article

Abstract

Changes have been introduced into the Ca(2+)-dependent carbohydrate-recognition domain (CRD) of rat serum mannose-binding protein by site-directed mutagenesis to model the binding sites of homologous galactose-binding CRDs. Binding assays reveal that galactose-binding activity nearly identical to that of the CRD from the asialoglycoprotein receptor can be introduced into the mannose-binding site by 3 single amino acid changes and insertion of a segment of 5 amino acids. Separate changes are required to establish high-affinity binding to galactose and create high selectivity by exclusion of mannose from the binding site. The mutagenesis studies and NMR analysis of sugar-CRD titrations demonstrate that an important component of high-affinity galactose binding is interaction between the B face of the sugar and tryptophan. The binding properties of the C-type CRD from the cartilage proteoglycan, aggrecan, can also be modeled based on the mannose-binding CRD frame-work. This lower affinity binding site involves stacking of a phenylalanine residue against the sugar ligand.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources