Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May 24;91(11):4766-70.
doi: 10.1073/pnas.91.11.4766.

Advanced glycation end products contribute to amyloidosis in Alzheimer disease

Affiliations

Advanced glycation end products contribute to amyloidosis in Alzheimer disease

M P Vitek et al. Proc Natl Acad Sci U S A. .

Abstract

Alzheimer disease (AD) is characterized by deposits of an aggregated 42-amino-acid beta-amyloid peptide (beta AP) in the brain and cerebrovasculature. After a concentration-dependent lag period during in vitro incubations, soluble preparations of synthetic beta AP slowly form fibrillar aggregates that resemble natural amyloid and are measurable by sedimentation and thioflavin T-based fluorescence. Aggregation of soluble beta AP in these in vitro assays is enhanced by addition of small amounts of pre-aggregated beta-amyloid "seed" material. We also have prepared these seeds by using a naturally occurring reaction between glucose and protein amino groups resulting in the formation of advanced "glycosylation" end products (AGEs) which chemically crosslink proteins. AGE-modified beta AP-nucleation seeds further accelerated aggregation of soluble beta AP compared to non-modified "seed" material. Over time, nonenzymatic advanced glycation also results in the gradual accumulation of a set of posttranslational covalent adducts on long-lived proteins in vivo. In a standardized competitive ELISA, plaque fractions of AD brains were found to contain about 3-fold more AGE adducts per mg of protein than preparations from healthy, age-matched controls. These results suggest that the in vivo half-life of beta-amyloid is prolonged in AD, resulting in greater accumulation of AGE modifications which in turn may act to promote accumulation of additional amyloid.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5959-63 - PubMed
    1. Cell. 1993 Jun 18;73(6):1055-8 - PubMed
    1. J Clin Invest. 1980 Nov;66(5):1179-81 - PubMed
    1. Science. 1981 Jan 30;211(4481):491-3 - PubMed
    1. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5190-2 - PubMed

Publication types