Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;266(5 Pt 2):R1477-82.
doi: 10.1152/ajpregu.1994.266.5.R1477.

Effects of temperature and freezing on hepatocytes isolated from a freeze-tolerant frog

Affiliations

Effects of temperature and freezing on hepatocytes isolated from a freeze-tolerant frog

K B Storey et al. Am J Physiol. 1994 May.

Abstract

Metabolically active hepatocytes prepared from freeze-tolerant wood frogs, Rana sylvatica, were used to examine the direct effects of temperature and freezing on cryoprotectant synthesis and to assess the effectiveness of the natural cryoprotectant glucose in the freezing preservation of the isolated cells. Freshly isolated hepatocytes showed slow leakage of lactate dehydrogenase, readily synthesized urea, and oxidized a variety of 14C-labeled substrates. Effects of temperature on glucose production by isolated hepatocytes showed a normal Arrhenius relationship. However, compared with 0 degrees C control cells, either incubation at higher temperatures or freezing at -3 degrees C reduced the activity of glycogen phosphorylase alpha. These data suggest that the freezing-induced cryoprotectant production that occurs in vivo is not due to direct action of either low temperature or freezing on liver cell metabolism. The natural cryoprotectant glucose was also an excellent cryoprotectant of hepatocytes in vitro. In the absence of glucose, freezing caused a substantial leakage of lactate dehydrogenase from isolated hepatocytes, the rate of leakage increasing as freezing temperature decreased. Addition of 200-600 mM glucose to the incubation medium (similar to natural levels) fully protected cells against damage during freezing at -4 or -8 degrees C, normal freezing temperatures experienced by these frogs. Glucose also greatly improved freezing survival of isolated frog hepatocytes at ultralow temperatures (-80 or -196 degrees C).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources