Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar;26(3):189-96.

NADPH-dependent lipid peroxidation capacity in unfixed tissue sections: characterization of the pro-oxidizing conditions and optimization of the histochemical detection

Affiliations
  • PMID: 8206788

NADPH-dependent lipid peroxidation capacity in unfixed tissue sections: characterization of the pro-oxidizing conditions and optimization of the histochemical detection

M Thomas et al. Histochem J. 1994 Mar.

Abstract

Factors which influence the iron-stimulated lipid peroxidation in rat liver have been studied by incubating unfixed cryostat sections with a pro-oxidant system and using an optimized histochemical detection method for lipid peroxidation products with 3-hydroxy-2-naphthoic acid hydrazide and Fast Blue B. We used a method that was slightly different from the one described previously. The final reaction product was exclusively localized in the cytoplasm of liver parenchymal cells with a homogeneous distribution within the liver lobule. The absorbance maximum, as measured cytophotometrically, was found to be 550 nm. Maximum lipid peroxidation was observed when the pro-oxidant system contained 0.2 mM NADPH, 1 mM ADP and 15 microM FeCl2. Some reaction product was found when NADPH was omitted. Iron concentrations higher than 180 microM prevented the formation of lipid peroxidation products in certain areas of the sections, whereas ADP concentrations higher than 1 mM inhibited the reaction in the whole section. A pH dependency was also observed, with the highest lipid peroxidation at pH 7.2. Optimum lipid peroxidation was induced by incubating for 30 min at 37 degrees C with the pro-oxidant system. A linear relationship was found between the thickness of the sections (up to 20 microns) and the amount of lipid peroxidation products. The addition of scavengers of O2-. (superoxide dismutase), hydrogen peroxide (catalase) and OH. (mannitol) to the first step medium did not affect the amount of final reaction product. These findings appear to confirm the hypothesis proposed for events occurring in isolated microsomes, leading to the formation of hydroperoxides and ultimately lipid peroxidation-derived carbonyls.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

References

    1. J Biol Chem. 1971 Jan 10;246(1):263-9 - PubMed
    1. Biochem Biophys Res Commun. 1964;14:323-8 - PubMed
    1. Biochem Biophys Res Commun. 1972 Aug 21;48(4):789-95 - PubMed
    1. Biochim Biophys Acta. 1980 Dec 5;620(3):489-99 - PubMed
    1. J Biol Chem. 1979 Jul 10;254(13):5892-9 - PubMed

Publication types