Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993:344:17-36.
doi: 10.1007/978-1-4615-2994-1_2.

Agonist receptors and G proteins as mediators of platelet activation

Affiliations
Review

Agonist receptors and G proteins as mediators of platelet activation

L F Brass et al. Adv Exp Med Biol. 1993.

Abstract

Recent studies have helped to define the earliest events of signal transduction in platelets, particularly those involved in the generation of second messengers. The best-understood of these events are those which involve guanine nucleotide binding regulatory proteins. G proteins are heterotrimers comprised of alpha, beta and gamma subunits, each of which can exist in multiple forms. Some, but not all, of the known variants of G alpha are substrates for ADP-ribosylation by pertussis toxin, a modification which disrupts the flow of information from receptor to effector. The G proteins that have been identified in platelets to date are Gs, Gi1, Gi2, Gi3, Gz and Gq. Gs and one or more of the Gi family members regulate cAMP formation by adenylylcyclase. Gi may also be responsible for the pertussis toxin-sensitive activation of phospholipase C which occurs when platelets are activated by thrombin. Gq is thought to be responsible for the pertussis toxin-resistant activation of phospholipase C by TxA2. Gz does not have an established role, but has the unique property of being phosphorylated by protein kinase C during platelet activation. Recent efforts to clone the receptors that interact with G proteins in platelets have been successful for epinephrine, thrombin, TxA2 and platelet activating factor. Each of these resembles other G protein-coupled receptors, being comprised of a single polypeptide with 7 transmembrane domains. In the case of thrombin, receptor activation is thought to involve a unique mechanism in which thrombin cleaves its receptor, creating a new N-terminus that can serve as a tethered ligand. Peptides corresponding to the tethered ligand can mimic the effects of thrombin, while antibodies to the same domain inhibit platelet activation. Shortly after activation, thrombin receptors become resistant to re-activation by thrombin. This desensitization, which appears to be due to a combination of proteolysis, phosphorylation and internalization, provides a potential mechanism for limiting the duration of thrombin-initiated signals in platelets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources