Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993:344:237-49.
doi: 10.1007/978-1-4615-2994-1_19.

Role of cyclic nucleotide-dependent protein kinases and their common substrate VASP in the regulation of human platelets

Affiliations
Review

Role of cyclic nucleotide-dependent protein kinases and their common substrate VASP in the regulation of human platelets

U Walter et al. Adv Exp Med Biol. 1993.

Abstract

The activation of human platelets is inhibited by two intracellular pathways regulated by either cGMP- or cAMP-elevating agents. There is considerable evidence that the inhibitory effects of cGMP and cAMP are mediated by the cGMP-PK and cAMP-PK, respectively, in human platelets. The cGI-PDE is an additional target for cGMP, and the cGMP-mediated elevation of cAMP levels contributes to the well known synergism between cAMP- and cGMP-elevating platelet inhibitors. Stimulation of both cAMP-PK and cGMP-PK prevents the agonist-induced activation of MLCK and PKC and inhibits the agonist-induced calcium mobilization from intracellular stores without any major effect on the ADP-regulated cation channel. These studies suggest that the inhibition of an early event of platelet activation, e.g. activation of PLC, is an effect common to both cGMP-PK and cAMP-PK stimulation. A common substrate of both cGMP-PK and cAMP-PK, the 46/50 kDa protein VASP, has been recently identified as a novel microfilament- and focal contact-associated protein whose phosphorylation correlates very well with platelet inhibition. Future investigations will have to identify the precise molecular mechanism of cyclic nucleotide inhibition of Ca2+ discharge from intracellular stores and whether cGMP-PK- and cAMP-PK-mediated VASP phosphorylation is an important component of this effect of cyclic nucleotides in human platelets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources