Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Nov 9;32(44):11878-85.
doi: 10.1021/bi00095a017.

Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O

Affiliations
Comparative Study

Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O

Y Goto et al. Biochemistry. .

Abstract

Whereas the salt-dependent conformational transition of acid-denatured horse ferricytochrome c at pH 2 is approximated by a two-state mechanism from the acid-unfolded state to the molten globule state [Kataoka, M., Hagihara, Y., Mihara, K., & Goto, Y. (1993) J. Mol. Biol. 229, 591-596], the corresponding transition in D2O has been proposed to involve a noncompact, alpha-helical intermediate state (the pre-molten globule state) [Jeng, M.-F., & Englander, S. W. (1991) J. Mol. Biol. 221, 1045-1061]. To examine the proposed difference in the conformational transitions, we carried out the HCl and DCl titrations of cytochrome c in H2O and D2O, respectively, measured by far-UV circular dichroism, tryptophan fluorescence, and Soret absorption. In both D2O and H2O, unfolding from the native state to the acid-unfolded state and subsequent refolding to the molten globule state were observed. In either solvent, the conformational transitions were well approximated by a minimal three-state mechanism consisting of the native, molten globule, and acid-unfolded states. Thus, our results did not substantiate the presence of a pre-molten globule state in D2O. Acetylation of amino groups of cytochrome c is known to stabilize the molten globule state at pH 2. On the basis of the three-state mechanism, we constructed a conformational phase diagram for the effect of pH and the degree of acetylation. This phase diagram was similar to that of the pH- and salt-dependent conformational transition of cytochrome c, suggesting that the effects of acetylation on the conformational states are similar to those of salt.

PubMed Disclaimer

Similar articles

Cited by

Publication types