Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov 7;1152(2):207-18.
doi: 10.1016/0005-2736(93)90251-t.

Electrical properties of cell pellets and cell electrofusion in a centrifuge

Affiliations

Electrical properties of cell pellets and cell electrofusion in a centrifuge

I G Abidor et al. Biochim Biophys Acta. .

Abstract

A new approach is proposed for studying cell deformability by centrifugal force, electrical properties of cell membranes in a high electric field, and for performing efficient cell electrofusion. Suspensions of cells (L929 and four other cell types examined) are centrifuged in special chambers, thus forming compact cell pellets in the gap between the electrodes. The setup allows measurement of the pellet resistance and also the high-voltage pulse application during centrifugation. The pellet resistance increases sharply with the centripetal acceleration, which correlates with reduction of the cell pellet porosity due to cell compression and deformation. Experiments with cells pretreated with cytochalasin B or colcemid showed that cell deformability depends significantly on the state of cytoskeleton. When the voltage applied to the cell pellet exceeds a 'critical' value, electrical breakdown (poration) of cell membranes occurs. This is seen as a deflection in the I(V) curve for the cell pellet. The electropores formed during the breakdown reseal in several stages: the fastest takes 0.5-1 ms while the whole process completes in minutes. A novel effect of colloid-osmotic compression of cell pellets after electric cell permeabilization is described. Supercritical pulse application to the cell pellet during intensive centrifugation leads to massive cell fusion. The fusion index grows with the increase of centripetal acceleration, and drops drastically when the pulse is applied after the centrifuge is stopped. The colloid-osmotic pellet compression enhances the fusion efficiency. No fusion occurs when cells are brought in contact after the pulse treatment. The data suggest that tight intermembrane contact formed prior to pulse application is a prerequisite condition for efficient cell electrofusion. The capacities of the technique proposed and the mechanism of membrane electrofusion are discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources