Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Mar;3(3):437-49.
doi: 10.1046/j.1365-313x.1993.t01-26-00999.x.

The pea plastocyanin promoter directs cell-specific but not full light-regulated expression in transgenic tobacco plants

Affiliations
Free article
Comparative Study

The pea plastocyanin promoter directs cell-specific but not full light-regulated expression in transgenic tobacco plants

K H Pwee et al. Plant J. 1993 Mar.
Free article

Abstract

A series of 5' deletions of the pea plastocyanin gene (petE) promoter fused to the beta-glucuronidase (GUS) reporter gene has been examined for expression in transgenic tobacco plants. Strong positive and negative cis-elements which modulate quantitative expression of the transgene in the light and the dark have been detected within the petE promoter. Disruption of a negative regulatory element at -784 bp produced the strongest photosynthesis-gene promoter so far described. Histochemical analysis demonstrated that all petE-GUS constructs directed expression in chloroplast-containing cells, and that a region from -176 bp to +4 bp from the translation start site was sufficient for such cell-specific expression. The petE-promoter fusions were expressed at high levels in etiolated transgenic tobacco seedlings but there was no marked induction of GUS activity in the light. The endogenous tobacco plastocyanin genes and the complete pea plastocyanin gene in transgenic tobacco plants were also expressed in the dark, but showed a three- to sevenfold increase in the light. This indicates a requirement for sequences 3' to the promoter for the full light response of the petE gene.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources