Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct 15;217(2):587-95.
doi: 10.1111/j.1432-1033.1993.tb18281.x.

Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum

Affiliations
Free article

Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum

L G Bonacker et al. Eur J Biochem. .
Free article

Abstract

Methyl-coenzyme M reductase (MCR) catalyses the methane-forming step in the energy metabolism of methanogenic Archaea. It brings about the reduction of methyl-coenzyme M (CH3-S-CoM) by 7-mercaptoheptanoylthreonine phosphate (H-S-HTP). Methanobacterium thermoautotrophicum contains two isoenzymes of MCR, designated MCR I and MCR II, which are expressed differentially under different conditions of growth. These two isoenzymes have been separated, purified and their catalytic and spectroscopic properties determined. Initial-velocity measurements of the two-substrate reaction showed that the kinetic mechanism for both isoenzymes involved ternary-complex formation. Double reciprocal plots of initial rates versus the concentration of either one of the two substrates at different constant concentrations of the other substrate were linear and intersected on the abcissa to the left of the 1/v axis. The two purified isoenzymes differed in their Km values for H-S-HTP and for CH3-S-CoM and in Vmax. MCR I displayed a Km for H-S-HTP of 0.1-0.3 mM, a Km for CH3-S-CoM of 0.6-0.8 mM and a Vmax of about 6 mumol.min-1 x mg-1 (most active preparation). MCR II showed a Km for H-S-HTP of 0.4-0.6 mM, a Km for CH3-S-CoM of 1.3-1.5 mM and a Vmax of about 21 mumol.min-1 x mg-1 (most active preparation). The pH optimum of MCR I was 7.0-7.5 and that of MCR II 7.5-8.0. Both isoenzymes exhibited very similar temperature activity optima and EPR properties. The location of MCR I and of MCR II within the cell, determined via immunogold labeling, was found to be essentially identical. The possible basis for the existence of MCR isoenzymes in M. thermoautotrophicum is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources