Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;157(2):279-88.
doi: 10.1002/jcp.1041570210.

Senescence of aortic endothelial cells in culture: effects of basic fibroblast growth factor expression on cell phenotype, migration, and proliferation

Affiliations

Senescence of aortic endothelial cells in culture: effects of basic fibroblast growth factor expression on cell phenotype, migration, and proliferation

H G Augustin-Voss et al. J Cell Physiol. 1993 Nov.

Abstract

Bovine aortic endothelial cells (BAEC) can be isolated in large numbers without major contamination by other cells and maintained in culture with a limited life span for about 100 population doublings. In order to study phenotypic changes of BAEC during long-term culture, stocks of different passages of BAEC were established and their morphological, migratory, and proliferative properties analyzed. Early-passage BAEC (passages 5-15) rapidly produce dense, cobblestone-like monolayers. Their growth beyond the monolayer configuration is characterized by the formation of an irregular network of spindle-shaped, crisscrossing BAEC growing either on top or beneath the monolayer, and by the assembly of elongated BAEC into well-differentiated capillary-like tubes. In contrast, senescent BAEC (passages 35-45) form perfect cobblestone monolayers that contain several, often multinucleated giant cells and a few capillary-like tubes but not the crisscrossing networks of their early-passage counterparts. The rates of BAEC migration and proliferation gradually decline during in vitro senescence. This decline is neutralized by exogenous basic fibroblast growth factor (bFGF) which elevates the migratory and proliferative capacities of early-passage and senescent BAEC to uniformly high levels. Northern blot analysis shows a gradual decline in bFGF message and an increase in laminin message during in vitro BAEC senescence. The present study supports the concept of autocrine growth regulation of BAEC and associates a decreased bFGF message with decreased rates of migration and proliferation as well as loss of the crisscrossing BAEC morphotype in senescent cultures.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources