Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;54(5):379-83.
doi: 10.1002/jlb.54.5.379.

NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnaea stagnalis

Affiliations

NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnaea stagnalis

C M Adema et al. J Leukoc Biol. 1993 Nov.

Abstract

Macrophage-like defense cells (hemocytes) of the pond snail Lymnaea stagnalis generate reactive oxygen intermediates (ROIs) upon contact with non-self, following kinetics similar to those of ROI production by mammalian leukocytes during respiratory burst. In this study, several inhibitors of NADPH-oxidase, the key enzyme of the respiratory burst in mammalian phagocytes, were tested for their effect on oxidative activities [as demonstrated by nitroblue tetrazolium (NBT) reduction and luminol-dependent chemiluminescence (LDCL)] of phagocytosing snail hemocytes. In the presence of diphenylene iodonium, zymosan-stimulated hemocytes of L. stagnalis failed to reduce NBT and showed a markedly reduced LDCL response. Also, compounds that prevent assembly of functional NADPH-oxidase complexes in activated mammalian cells were effective; preincubation of hemocytes with 1,4-naphthoquinone inhibited the LDCL response and NBT reduction upon phagocytic stimulation. Furthermore, coincubation but not preincubation with five different catechol-like phenols inhibited oxidative activities of zymosan-stimulated hemocytes. These results imply similarities in composition and regulation of the ROI-generating mechanisms of both mammalian and snail defense cells. It is postulated that in L. stagnalis hemocytes, (1) NADPH-oxidase activity is responsible for ROI production, (2) an active NADPH-oxidase enzyme complex has to be assembled from putative cytosolic and membrane-associated components, and (3) continuous replacement of active NADPH-oxidase enzyme complexes is necessary to sustain respiratory burst-like oxidative activities during interactions with non-self.

PubMed Disclaimer

LinkOut - more resources