Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Sep;70(3):997-1008.
doi: 10.1152/jn.1993.70.3.997.

Mechanical properties of cat soleus muscle elicited by sequential ramp stretches: implications for control of muscle

Affiliations

Mechanical properties of cat soleus muscle elicited by sequential ramp stretches: implications for control of muscle

D C Lin et al. J Neurophysiol. 1993 Sep.

Abstract

1. Force changes in areflexive cat soleus muscle in decerebrate cats were recorded in response to two sequential constant velocity (ramp) stretches, separated by a variable time interval during which the length was held constant. Initial (i.e., prestretch) background force was generated by activating the crossed-extension reflex, and stretch reflexes were eliminated by section of ipsilateral dorsal roots. 2. For the initial 400-900 microns of the first stretch, the muscle exhibited high stiffness, classically termed "short-range stiffness." This high stiffness region was followed by an abrupt reduction in stiffness, called muscle "yield," after which force remained at a relatively constant level, achieving a plateau in force. This plateau force level depended largely on stretch velocity, but this dependence was much less than proportional to the increase in stretch velocity, in that a 10-fold increase in velocity produced < 2-fold increase in plateau force. 3. In experiments where the velocities of the two sequential ramp stretches were identical, the force plateau level was the same for each stretch, regardless of the time elapsed before the second stretch (varied from 0 to 500 ms). In contrast, measures of stiffness during the initial portion of the second stretch showed time-dependent magnitude reductions. However, stiffness recovered quickly after the first stretch was completed, returning to control values within 30-40 ms. 4. In one preparation, in which the velocities of the two sequential ramp stretches were different, the force plateau elicited during the second stretch exhibited velocity dependence comparable with that recorded in the earlier single velocity studies. Furthermore, muscle yield was still evident in the case where the force change was due solely to the change in velocity and where short-range stiffness had not yet recovered fully from the initial stretch. On the basis of these findings, we argue that the classical descriptions of short-range stiffness and yield are inadequate and that the change in force that has typically been called the muscle yield reflects a transition between short-range, transient elastic behavior to steady-state, essentially viscous behavior. 5. To examine changes in the muscle's mechanical stiffness during single ramp stretches, a single pulse perturbation was superimposed at various times before, during, and subsequent to the constant velocity stretch. The force increment elicited in response to each pulse decreased relative to the initial isometric value, remained essentially constant until the end of the ramp, and then returned to its prestretch magnitude shortly (30-40 ms) after stretch termination.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources