Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;267(1):205-10.

Mu- and delta-opioid receptors inhibitorily linked to dopamine-sensitive adenylate cyclase in rat striatum display a selectivity profile toward endogenous opioid peptides different from that of presynaptic mu, delta and kappa receptors

Affiliations
  • PMID: 8229747

Mu- and delta-opioid receptors inhibitorily linked to dopamine-sensitive adenylate cyclase in rat striatum display a selectivity profile toward endogenous opioid peptides different from that of presynaptic mu, delta and kappa receptors

A N Schoffelmeer et al. J Pharmacol Exp Ther. 1993 Oct.

Abstract

The apparent affinities of endogenous opioid peptides for noncompetitively interacting mu and delta receptors, inhibitorily linked to dopamine (DA) D-1 receptor-stimulated adenylate cyclase, were investigated in superfused rat striatal slices exposed to 40 microM DA in the presence of 10 microM of the selective D-2 receptor antagonist (-)sulpiride. In the presence of peptidase inhibitors, a comparison was made with the apparent affinities of opioid peptides toward independent presynaptic opioid receptors in brain slices. beta-Endorphin had an about 100-fold higher apparent affinity (EC50: 1 nM) toward presynaptic mu-opioid receptors, mediating inhibition of the electrically evoked neocortical [3H]norepinephrine release, than for the striatal adenylate cyclase-coupled mu receptors. In contrast, the kappa-opioid receptor agonist dynorphin A1-13 displayed a similar apparent affinity (EC50: 0.1 microM) toward these functionally different mu receptors. Both Leu- and Met-enkephalin showed only a 3-fold higher apparent affinity (EC50: 30 nM) for presynaptic delta-opioid receptors, mediating inhibition of striatal [14C]acetylcholine release, than for presynaptic mu receptors. However, whereas Leu-enkephalin had a similar apparent affinity for presynaptic and adenylate cyclase-coupled delta receptors, Met-enkephalin displayed a 30-fold selectivity toward the latter receptors. Studying the inhibitory effect of Met-enkephalin on striatal adenylate cyclase stimulated by endogenously released (amphetamine-induced) DA, its very high affinity appeared to be inversely related to the activation of inhibitory DA D-2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources