Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Oct;44(4):681-8.

Structure and properties of omega-agatoxin IVB, a new antagonist of P-type calcium channels

Affiliations
  • PMID: 8232218
Comparative Study

Structure and properties of omega-agatoxin IVB, a new antagonist of P-type calcium channels

M E Adams et al. Mol Pharmacol. 1993 Oct.

Abstract

A new peptide antagonist of voltage-activated calcium channels was purified from venom of the funnel web spider, Agelenopsis aperta. This 48-amino acid peptide, omega-agatoxin (omega-Aga)-IVB, was found to be a potent (Kd, approximately 3 nM) blocker of P-type calcium channels in rat cerebellar Purkinje neurons but had no activity against T-type, L-type, or N-type calcium channels in a variety of neurons. The calcium channel-blocking properties of omega-Aga-IVB were similar to those of another toxin, omega-Aga-IVA, which has 71% amino acid identity with omega-Aga-IVB. The 10-fold greater abundance of omega-Aga-IVB in venom allowed structural studies using NMR spectroscopy. The three-dimensional structure derived from NMR data resulted in a proposed disulfide bond configuration for the peptide. Although omega-Aga-IVB has fewer basic and more acidic residues than does omega-Aga-IVA, the two toxins show conservation of positively charged residues in a mid-peptide region that is predicted to form one face of the omega-Aga-IVB molecule. This region may be crucial for high affinity binding to the P-type calcium channel. In contrast, the amino termini of the two toxins have different charges and seem unlikely to be involved in binding to the channel.

PubMed Disclaimer

Publication types

LinkOut - more resources