Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;265(4 Pt 2):F477-86.
doi: 10.1152/ajprenal.1993.265.4.F477.

Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations

Affiliations

Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations

S Anderson et al. Am J Physiol. 1993 Oct.

Abstract

Recent evidence indicates a role for the renin-angiotensin system (RAS) in the pathogenesis of glomerular injury in diabetes. To further explore the RAS in diabetes, studies were conducted in nondiabetic control rats and in moderately hyperglycemic diabetic (DM) rats. In DM rats, both acute and chronic therapy with the specific angiotensin II (ANG II) receptor antagonist losartan did not affect glomerular hyperfiltration or hyperperfusion but selectively normalized the glomerular capillary hydraulic pressure and ultrafiltration coefficient. To determine the basis of intrarenal hemodynamic responsiveness to RAS inhibition, we conducted biochemical, molecular biological, and immunohistochemical studies to assess endogenous RAS activity. Values for plasma renin concentration and serum angiotensin-converting enzyme (ACE) activity in DM rats were normal. In contrast, intrarenal renin protein content, and renin and angiotensinogen mRNAs, were increased in DM rats, suggesting disproportionate activation of the intrarenal RAS. Total renal ACE activity was significantly reduced in DM rats, but immunohistochemical studies indicated redistribution of ACE in the diabetic kidney. Proximal tubule ACE activity was reduced, but ACE immunostaining intensity was enhanced in glomeruli and renal vasculature. Together, these observations indicate increased RAS activity in those sites (glomeruli and vasculature) most likely to regulate hemodynamic function, potentially explaining the prominent responses to pharmacological blockade of ANG II formation and/or action.

PubMed Disclaimer

Publication types

LinkOut - more resources