Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;265(4 Pt 2):H1424-33.
doi: 10.1152/ajpheart.1993.265.4.H1424.

Modulation of calcium homeostasis in cultured rat aortic endothelial cells by intracellular acidification

Affiliations

Modulation of calcium homeostasis in cultured rat aortic endothelial cells by intracellular acidification

R C Ziegelstein et al. Am J Physiol. 1993 Oct.

Abstract

Acidosis produces vasodilation in a process that may involve the vascular endothelium. Because synthesis and release of endothelium-derived vasodilatory substances are linked to an increase in cytosolic calcium concentration ([Ca2+]i), we examined the effect of intracellular acidification on cultured rat aortic endothelial cells loaded either with the pH-sensitive probe carboxy-seminaphthorhodafluor-1 or the Ca(2+)-sensitive fluorescent probe indo 1. The basal cytosolic pH (pHi) of endothelial monolayers in a 5% CO2-HCO3- buffer was 7.27 +/- 0.02 and that in a bicarbonate-free solution was 7.22 +/- 0.03. Acidification was induced either by removal of NH4Cl (delta pHi = -0.10 +/- 0.02), changing from a bicarbonate-free to a 5% CO2-HCO3(-)-buffered solution at constant buffer pH (delta pHi = -0.18 +/- 0.03), or changing from a 5% to a 20% CO2-HCO3- solution (delta pHi = -0.27 +/- 0.07). Regardless of the method used, intracellular acidification increased [Ca2+]i as indexed by indo 1 fluorescence. The increase in [Ca2+]i induced by changing from a 5 to a 20% CO2-HCO3- solution was not significantly altered by removal of buffer Ca2+ either before or after depletion of bradykinin- and thapsigargin-sensitive intracellular Ca2+ stores. Thus intracellular acidification of vascular endothelial cells releases Ca2+ into the cytosol either from pH-sensitive intracellular buffer sites, mitochondria, or from bradykinin- and thapsigargin-insensitive intracellular stores. This Ca2+ mobilization may be linked to endothelial synthesis and release of vasodilatory substances during acidosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources