Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 1;53(23):5629-37.

Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes

Affiliations
  • PMID: 8242617

Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes

T K Chang et al. Cancer Res. .

Abstract

The present study identifies the specific human cytochrome P-450 (CYP) enzymes involved in hydroxylation leading to activation of the anticancer drug cyclophosphamide and its isomeric analogue, ifosphamide. Substantial interindividual variation (4-9-fold) was observed in the hydroxylation of these oxazaphosphorines by a panel of 12 human liver microsomes, and a significant correlation was obtained between these 2 activities (r = 0.85, P < 0.001). Enzyme kinetic analyses revealed that human liver microsomal cyclophosphamide 4-hydroxylation and ifosphamide 4-hydroxylation are best described by a 2-component Michaelis-Menten model composed of both low Km and high Km P-450 4-hydroxylases. To ascertain whether one or more human P-450 enzymes are catalytically competent in activating these oxazaphosphorines, microsomal fractions prepared from a panel of human B-lymphoblastoid cell lines stably transformed with individual P-450 complementary DNAs were assayed in vitro for oxazaphosphorine activation. Expressed CYP2A6, -2B6, -2C8, -2C9, and -3A4 were catalytically competent in hydroxylating cyclophosphamide and ifosphamide. Whereas CYP2C8 and CYP2C9 have the characteristics of low Km oxazaphosphorine 4-hydroxylases, CYP2A6, -2B6, and -3A4 are high Km forms. In contrast, CYP1A1, -1A2, -2D6, and -2E1 did not produce detectable activities. Furthermore, growth of cultured CYP2A6- and CYP2B6-expressing B-lymphoblastoid cells, but not of CYP-negative control cells, was inhibited by cyclophosphamide and ifosphamide as a consequence of prodrug activation to cytotoxic metabolites. Experiments with P-450 form-selective chemical inhibitors and inhibitory anti-P-450 antibodies were then performed to determine the contributions of individual P-450s to the activation of these drugs in human liver microsomes. Orphenadrine (a CYP2B6 inhibitor) and anti-CYP2B IgG inhibited microsomal cyclophosphamide hydroxylation to a greater extent than ifosphamide hydroxylation, consistent with the 8-fold higher activity of complementary DNA-expressed CYP2B6 with cyclophosphamide. In contrast, troleandomycin, a selective inhibitor of CYP3A3 and -3A4, and anti-CYP3A IgG substantially inhibited microsomal ifosphamide hydroxylation but had little or no effect on microsomal cyclophosphamide hydroxylation. By contrast, the CYP2D6-selective inhibitor quinidine did not affect either microsomal activity, while anti-CYP2A antibodies had only a modest inhibitory effect. Overall, the present study establishes that liver microsomal CYP2B and CYP3A preferentially catalyze cyclophosphamide and ifosphamide 4-hydroxylation, respectively, suggesting that liver P-450-inducing agents targeted at these enzymes might be used in cancer patients to enhance drug activation and therapeutic efficacy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources